¢ BirD

M PORTAL

Euro Bird Portal (LIFE15 PRE/ES/000002)
Design of the new database repository and data-flow

Overview

This document describes the design of the new EBP database repository and associate data-
flow system. The system is divided in two different parts: the database repository and the
APIl/webservices.

Architecture overview

Onli rtal
EBP respository

v
i<

L

Data provisions
o

// /J
/' ,f
ff ,’ -
[t Map viewer
2CC i,

pis (7]

il

APl

gEmf ComeonCre

httpsziapi.eurobirdportal.org

N hitps:feurobirdportal.org
Map generation

CARTO®

Database

The database has been developed using PostgreSQL on an Amazon instance. We have chosen
PostgreSQL for several reasons:

e Itis the most powerful openSource relational database.
e Can handle huge amounts data.
e Geographical objects and methods capabilities.
e Expertise among several online portals and main developers.
The Amazon services gives us the following advantages:
e Scalability. We can adapt the server capabilities to the requirements.
e Costs are adapted to the CPU, memory, bandwidth and storage requirements.

The PostgreSQL database structure with the final design of the main database tables and
relations is shown in Annex 1.

Database optimizations

The amount of data in the database will be huge in the near future. Therefore, we had to
analyse bottlenecks and try to find extra optimizations. We've created indices and primary
keys/foreign keys in several database tables and optimized each field.

From the beginning, it was rather clear that it could be desirable to use partitioning on tables.
Partitioning improves query performance but increases insert and update times. In our case,
since most maps are done year by year, partitioning by year gave us the best results.

APIl/web services

Technology

All selected technology for the EBP repository is licensed as free software. Using free software
solutions we reduce costs and we are not hardly linked to a privative solution. Moreover, all
chosen technologies are competitive, actively maintained and powerful enough to fulfil our
requirements.

The EBP repository APl is deployed on a GNU/Linux server running on Apache webserver
using WSGI libraries to run Python webapps.

https://uwsgi-docs.readthedocs.io/en/latest/index.html
https://httpd.apache.org/

The API has been developed using the Flask micro web framework, written mainly in Python
programming language following the REST architectural style. Some other libraries have been
used to facilitate main tasks: RESTPIus (REST APIs creation), SQLAIchemy (Database access as
a SQL toolkit and Object Relational Mapper) and Authlib (Outh2 authentication).

As we identified some asynchronous tasks in the project, we had to create a queue and
messaging system to handle these jobs. As a message broker we use a RabbitMQ software and
for asynchronous task creation and scheduling we use the Celery library.

Security

We had to assure that only registered online portals can send data to the repository.

We have decided to use the OAuth 2.0 protocol for authentication and authorization with
PasswordGrant credentials for the EBP repository uses. OAuth2 is an authorization framework
that enables applications to obtain limited access to user accounts on a service. It provides
authorization flows for web and desktop applications, and mobile devices.

Services

The API should offer several operations related to main data structures:
e Species lists.
e Protocols: creation, removal and updates.
e Breeding codes list.
e Data provision: online portals data provision handling.

e QOauth2 : operations related to authorization.

Modules

Four main modules have been designed and implemented to fulfil the functional requirements:
a) Data provisions from online portals using the new EBP standard.
b) Maps creation for the demo viewer.

c) Repository management such as the administration zone, user creation and internal
visualizations (maps and graphs).

d) Metadata handling for species lists, breeding codes, audits.

https://oauth.net/2/grant-types/password/
https://oauth.net/2/
http://www.celeryproject.org/
https://www.rabbitmq.com/
https://authlib.org/
https://www.sqlalchemy.org/
http://flask-restplus.readthedocs.io/en/stable/
http://flask.pocoo.org/

a) Data provisions

We decided that the responsible of sending data will be the online portal and the exchange
format will be the JSON file. Online portals will do the data aggregation, standard creation and
updates/removals handling in their side. After that, they will automate the data-flow to send
to an API/web service the list of events and it's composite records.

We had to support two kind of data provisions:

1. Standard data provision: consists on sending regularly (daily, weekly or monthly) data
updates to be shown in the EBP viewer in a near real-time. Every data provision will
send new data from a concrete period with old inserts, updates or deletes,

2. Bulk data provision: sending old data using data standard from 2010 until standard
connection is established.

The online portal has to convert its own data to a JSON data provision following the standard
and send it to the API. It gets authenticated by the API and data goes through three validations
processes. The system creates an audit log where it’s possible to access to errors to be fixed
later. The first and second processes validate the format consistency, ids uniqueness, etc...

The third validation is done at database level as an asynchronous task. We send this tasks to
the processing queues because those validations require time. It checks that data is inside the
portal’s country, species code existence, etc. When the validation process is finished the online
portal can access to the audit with the validation errors.

Events and records without errors are inserted to the database linked to the partner source id
and upload id. When providing removals or modifications, previous data in the database is
modified or deleted depending on the state field added to the data provision event or record.

For the standard data provisions, the online portals have to create scheduled tasks to create
the data aggregations and send the data provisions. Depending on technological capabilities it
will be recommended to send data daily, weekly or monthly.

b) Maps creation

We've created a new module to aggregate data for the map viewer, adapting the previous
code. The algorithm aggregates EBP repository data from different partners at each 30x30 km
square and week and creates the different map types (occurrence, traces, counts and
phenological maps). It also creates the inter-annual cycles maps (for example “2015/16"). The
map generation process benefits from the GIS capabilities of the PostgreSQL database.

With the new near-real-time scenario, we also schedule, every week, the creation of the last
52 weeks maps. Those maps show data from the last week up to 51 weeks before.

Once data is aggregated, we upload and update the maps at the data visualization platform
CARTO. The map viewer shows the maps in the browser using the CARTO technology.

https://carto.com/
https://carto.com/
https://eurobirdportal.org/ebp/en/help/#maps
https://ico-apps.github.io/ebp_docs/EBP-repository.html#validation-phases
https://ico-apps.github.io/ebp_docs/EBP-repository.html#validation-phases
https://ico-apps.github.io/ebp_docs/EBP-repository.html#data-provision-structure

c) Repository management

The EBP repository also contains an administration zone. There are two different access roles:
online portal user and EBP repository admin.

The online portal user can access to the administration zone to:
o Get Oauth2 credentials.
e Access to its own partner sources and protocols.

¢ Get a the list of last audits from its own data provisions with information about:
provision dates, events loaded, provision mode and validation errors.

e Maps showing provided data from portal partners and some graphs with summarised
information.

The EBP repository admin can access to the administration zone to:
e Same operations as the online user but for all users and portals.

e Dashboard with information about the database state, the scheduled and asynchronous
tasks.

e User management (create, delete, role assignment).

e Overall statistics of online portals data provisions.

Last audits
Show 10 j entries Search:
Id Load date Part. source Status Mode Start date End date Errors Loaded Show errors
1016 2018-07-1613:49 ornitho.cat TEST @ 2015-01-01 2015-01-04 @) (2] show
1015 2018-07-1615:40 ornitho.cat TEST @ 2015-01-01 2015-01-04 §9 © Show
1014 2018-07-1615:39 ornitho.cat TEST @ 2015-01-01 2015-01-04 &) (2] Show

Example of a list of data provision audits as shown in the administration zone

(S N N NR T SN oY

-
L
5

" UNITED
ND KINGDOM NETHERL]

Amsterdam
=Bl

2

— T Lf:‘i_'l_

)
=z *Madrid &
SPAIN BALEARES
__ALMERIA JAlgiers:
ADIZE " e

Wi,

Map visualization of the submitted Ornitho data as shown in the administration zone

Events per week

Chart with the number submitted events per week as shown in the administration zone

Events count

d) Metadata handling
The API offers several operations for the online portals to help them with their data-flow
implementation.

In agreement with the the European Bird Census Council (EBCC), the EBP partnership agreed
on using the Handbook of the Birds of the World (HBW) as standard taxonomy checklists.

https://www.ebcc.info/

Each online portal has to map it's own taxonomy to the HBW species codes. We added some
gueries to the API to access to the species lists to simplify this mapping process.

Online portals can also access to breeding codes lists and the project type lists for the
protocol creation.

There are also some API methods to define, create and modify protocols into the EBP
repository database. Extended information can be found in the protocols section of the
documentation.

Scheduled and asynchronous task

As we have explained in the technology section, it was required to create a messaging system
to handle scheduled and asynchronous tasks.

Asynchronous tasks: time consuming tasks are sent to a processing queue to be executed
when the APl is not busy. Complex data validations and bulk data processing are processed
asynchronously.

Scheduled tasks: other tasks, like map generation, are also time consuming and they should be
executed regularly. Last year and last 52 weeks maps are generated every week when weekly
data provisions are finished.

Documentation

An extended documentation wiki has been created to help online portal developers to connect
with the EBP repository APl (Annex 2). We've also documented the APl methods using the
Swagger technology. Finally, developers can also access to a set of Postman examples.

https://app.getpostman.com/run-collection/456579a957514dd735e7
https://swagger.io/
https://ico-apps.github.io/ebp_docs/EBP-repository.html#api-protocol-methods
https://ico-apps.github.io/ebp_docs/EBP-repository.html
https://ico-apps.github.io/ebp_docs/EBP-repository.html#protocols
https://ico-apps.github.io/ebp_docs/EBP-repository.html#api-protocol-methods

Annex 1. Final database structure (main tables and relations)

public.species_hbw [tabls) oauth2_client [table]
|_audit_data_load —
| X . id client_id
et client_secret
spacies_id =
public.|_partner_portals [table] |_partner_sources o issued_at
. 1_protocol jes_list [tabla] Spioe o
[i |_protocols_species_li le]
4 ml'qhsho I Z 2 redirect_uri
rows >
portal_name |_protocols token_endpoint_auth_mathod
protocol_id
[orows] 4> public_protocels [tabl] socios_code grant_typs
protocal_id <2 40 rows responsa_type
user
public.ebp_events [table] protocal_code scope
r partner_id dlient_name
event_id -
project_type cient_uri
partner_source_id method o
datatype fixed_list_tags_type sy
" fixad_list_tags_count
protocel_id — e tos_uri
link ; =
event_date e policy_uri
jwks_urn
event_time website -
duration description Jwhs_test
protocol_details i18n_metadata
location_mode bp_data_struchure software_id
location_geometry citation software_version
id_ghif id
radius =
geographic_coverage user_id
records_total start_year <1 I 10 mwsl
observer_id end_year
event_external_id ongoing oauth2_code [tablg]
portal_id codi
creation_data - - [owws] 2> =
code10x10 Spprecorcs [table] rediract_uri
dit id record id public.|_audit_data_load [tabla] '
i .
e audit_data_load_id | o cbp_ovents response_type
year_val event_id oo load scope
edition_date spacies_code partner_source_id nonce
) auth_time
l 0!aws| 1> count status
row_count public.user [tabla) id
n r
count_accuracy vow_count_Joeded id user_id
public.]_breeding_codes [table] records_of_species start_date usemama <1 | orows]
breeding_code breeding_code sod_pate password_hash
- - ocauth2_token [tablo)
breeding_code_text flying_over description [tabla]
— — portal_d p— dlient_ic
[0 rows | 1> record_external_id od access lovel =
- ! record_updates_mode L Token_type
0 rows 1 —
creation_date I 1 d acive access_token
ublic.species_hbw [table
5 Shoces ow el year_val public|_partner_sources _[table) [orows[3> refrash_token
d =3 | 10.452.669 rows pr——— b
sys pariner_source_code ravoked
i artnaer_id issued_at
species_id T :
pariner_source_dec expires_in
latin bl -
global_partner_source id
anglish parent_partner_source_id user_d
Orows| 2> portal i <1 | 102roms
| 0 raws 1>

Annex 2. APl Documentation

Latest update: 30 May 2018

Table of Contents

e Qverview

e EBP workflow
o Introduction

o Data flow schema

o Authentication

o Connection scenarios

o Modification scenarios
o Data provision structure
o Events and records

o Schema validations

o Validation phases
m Global checks

m Pre checks
m Post checks
e Protocols
e Recomended system integration steps
¢ Metadata
o Species list
o Breeding codes

o Partner sources

Overview

The APl is already on-line EBP API. ICO team has developed it in Python using a micro framework called Flask. You can
start testing with your own data.

We have decided the JSON structure for the data provision EBP API, as you can see in the json schema. Data provisions
should inclide always to a particular date range (i.e. 2016-01-04 / 2016-01-10) and partner_data_source. For example, if
ICO wants to submit Bird Garden Survey and Ornitho.cat data it should sent data separately (since they originate from two
different sources).

We have also implemented three provision modes: Standard (the one to be used for “standard” weekly updates), Bulk (all
data submited is handled as “new” data that fully substitutes any data submitted previously; particularly useful for sending
big chunks of data —e.g. data older than the one submitted once the weekly updates start—) and Test (used only to
validate data provisions; no data is incorporated into the database). You will find more information in this document.

Events and records list follow the New EBP data standard format and the database structure proposal by BTO. JSON
schema is also described in the document.

EBP workflow

Introduction

Data provision will be done at partner_source level. All events and records must be from the same partner_source. We
have defined a |_partners table and I_partner_sources where you will find the partner_source_code required for the data
provison.

In agreement with the EBCC decision regarding species standard taxonomy checklists, we have used the HBW species_list
and codes. Through the API you can have a list of these species and also to protocols, project_types for protocols and
breeding_codes.

Data flow schema

1. System/partner sends periodically a data provision to the API

2. The API validates the format and checks consistency inside de provision (unique event ids, dates outside range,
location format, etc)

3. The API gives a result to the system/partner with an audit id where the system can check validation errors

4. The API continues doing some background checkings to the data (location inside partner’s area, unique event_id
inside partner's data, etc)

5. System/partner can access to the provision errors through the API.

{
“partner_source™

"CAT_ORN", POST : o -
Data provision “end_date:2016.06.06" g Pre-vaitaton QR L pase
“start_date": "2016-06-06", € ans

“records™ [], S r
*mode™ .sq’ /api/data/
"events™[]

{"partner_source": "ORN_ALL",

"end_date": "2018-04-02", Post-validations

"records_count": 1943, postgreSQL
<- - - ~["audit_id": 231, = e

"events_count™: 512, "start_date":

"2018-04-02"}

Get provision errors

GET l

/apiidata/audit{audit_ig}

{ "status™: "S",
“row_count™ 5,

<~ -("data_log": [error_list],
“row_count_loaded™: 5,
"date_load"™: "2018-03-28T13:00:40.708236",
"audit_data_load_id™: 231,

"mode™: "S"}

Authentication

The EBP repository uses the OAuth 2.0 protocol for authentication and authorization with PasswordGrant credentials.
a) Request a user. A user will be created for your provided username (user mail is desirable).

b) Once the user is created, you can obtain the OAuth 2.0 credentials (client_id and client_secret) from the EBP repository
Console.

¢) Your portal will get the token accessing via POST /oauth/token:

¢ Request headers
o Basic Auth header: with client_id:client_secret (base64-encoded)

e Request body:

o grant_type: password
o username: YOUR_USERNAME
o password: YOUR_PASSWORD

o scope: api

curl -u client_id:client_secret -XPOST https://api.eurobirdportal.org/oauth/token -F grant_type=password -F
username=YOUR_USERNAME -F password=YOUR_PASSWORD -F scope=api

d) Use the access token to access the secured routes from the API.

curl -X GET https://api.eurobirdportal.org/data/audit/last -H 'Authorization: Bearer ACCESS_TOKEN'

Connection scenarios

We will have three diferent connection scenarios:

Mode All data replaced Delete events Old events (outside provided date range)
Bulk mode v X X
Standard mode x \f \f (updates, removals)

Test mode x x W

Bulk mode (mode==B)

A bulk provision will be used when providing old data.

e All previous data inside the provided date interval will be removed
¢ No need to provide inserts or removals, all data will be overwritten.
e All provided events should be inside provided range.

Standard mode (mode==5)

An standard provision will be used during weekly or monthly updates.

e New data: All events inside the date range will be inserts

¢ Previous updated data are the events outside the provided date range (removed, modified or new past inserts). Past
data will be overwritten:

¢ |nsert/modification when event records > 0

e Removed when event records=0

Test mode (mode==T)

The data provision will not be uploaded to the database. It will be use for testing porpouses.

Modification scenarios

During standard updates, portals should send old modified and removed data. Events and records will have a state field to
differentiate updates/new from deletes.

Event modifications

When an event is modified, it should be sent again with new values and state=1. All event values will be replaced.

Type Changes Action

Send the complete event again (and modifications in case of event updates) with field state

Event Update/insert 1

Event Delete Send the event again with field state = 0

Record modifications

In case of records modifications, the event should be sent anyway. In most cases event should be also modified. We will
have two different modes to provide the records.

a) Only modified records (default update mode)
Send the complete event with the list modified records only.

¢ Advantages
o Data provision size will be smaller.

e Disadvantages
o You will need to track record removals or modifications.

Type Changes Action
Record Insert Send new records with state=1
Record Update Send the updated records with state=1 again. They will be overwritten

Record Delete Send the removed records with field state=0

b) All records
Send the complete event with the full list of records.
To allow this mode record_updates_mode = A field in the data provision should be added.

e Advantages
o You will always send the last state of the records. You don't need to track record removals or modifications.

¢ Disadvantages
o Data provision size will be bigger.

Type Changes Action

Send the complete list of records it doesn’t matter if they are new or modified. All records

Record Update/insert
P / will be overwritten with the new list of records

Record Delete No need to send the removed records

Data provision structure

To send data to the EBP repository you should send a JSON structure with the described mandatory fields. This is the API
method to send the data

Property Type Description

partner_source string The unique of the EBP partner source

Property
start_date
end_date
events

records

mode

record_updates_mode

(optional)

Type
date
date
array[Event]
array[Record]
string

ennun(B,S,T]

string
ennun[M,A]

Data provision sample

The data provision structure

"mode": "S",

"partner_source”: "CAT_ORN",
"start_date": "2016-01-04",
"end_date": "2016-01-10",

"events": [

Description
Start date provided
Last date provided

List of events
List of records

Provision mode B (Bulk: all data is replaced) / S (Standard: new data is
provided/ T (Test: data validation porpouses)

Update mode M (Only updated records will be provided) / Update mode A
(All records are provided). Default mode is M when record_updates_mode
is not provided

{
"data_type": "L",
"date": "2016-01-04",
"event_id": "71456",
"location": "POINT(3.056 41.813)",
"location_mode": "E“,
"observer": "7840",
"protocol_id": ",
"records": 27,
"time": "17:14:00",
"state": 1
by
])
“"records": [
{
"count": 2,
"event_id": "71456",
"flying_over": "N",
"record_id": "3170459",
"records_of_species": 1,
"species_code": 52834,
"state": 1
}J
{
"count": 2,
"event_id": "71456",
"flying_over": "N",
"record_id": "3170448",
"records_of_species": 1,
"species_code": 58515,
"state": 1
b
1

Events and records

Within the JSON definition for records and events we won't use nulls as the provided standard. When a field is null
we can provided and empty string or remove the field from the json.

Events

'properties’: {
‘data_type': {'enum': ['C', 'L', 'F'],'description': 'C (casual record) / L (complete list) / F (fixed 1
‘date': { 'type': 'string' },

‘duration': { 'type': 'number' ,‘'description':'Duration (in hours). Null if unknown or location_mode=A","'r
‘event_id': { 'type': 'string' },
‘location_mode': {‘'enum': ['E', 'D', 'A'],'description': 'E (original exact location provided) / D (loc:

‘location': { 'type': 'string', 'description':'Centroid of the location in Well Known Text (WKT) in WGS84'
‘observer': { 'type': 'string' },
‘protocol_id': { 'type': 'string' },
‘radius’: { ‘type': ‘number’','description’:'Maximum distance (in m) to the location centroid travelled/co\
‘records': { 'type': 'integer', 'minimum': 1, ‘'description':'Total number of records.'},
‘time': { 'type': 'string', 'required’:False},
‘state': { ‘'type': 'number'}
})
‘type': 'object’

e event_id Identifier of the observational event (e.g. a given complete list).

o For example: you can use julian date and 10km ETRS89-LAEA grid code as event_id for aggregated casual records
(see locationMode = A below).

e data_type C (casual record) / L (complete list) / F (fixed list)

o Note that in complete lists all species that are detected are recorded; in fixed lists only all species from a
predefined list (e.g. Meadowbirds, Waterfowl) that are detected are recorded (this list should be provided in table
Protocols (see below)).

o [“In the rare cases where fixed lists cannot refer to a given predefined list of species their records must be
provided as casual ones” has been deleted. Even if the list of species is not fully fixed, the tags in the protocol
table allow to specify quite a lot of relavent information. If necessary, always such data can be used as casual]

e date Date of the observational event.

e time Start time of the observational event in local time.
o Empty or removed if unknown or locationMode=A.

¢ location_mode
o E (original exact location provided)

o D (location lowered to 10x10km level —ETRS89-LAEA grid—)
o A (data aggregated at 10x10km level —ETRS89-LAEA grid—)

o Note that complete and fixed lists can be provided either using locationMode E or D, while casual records must
be provided always aggregated at 10x10 (i.e. using locationMode A).

e |ocation
o location_mode=E original exact location provided in Well Known Text (WKT) in WGS84. Example: POINT(3.056
41.813)

o location_mode = D/A ETRS89-LAEA grid 10x10 code. Example: T0kmE353N212

e protocol_id Identifier of the protocol followed (e.g. a given Common Breeding Bird Survey). Leave blank in case of
casual records and when complete lists do not proceed from standard monitoring projects.

¢ radius Maximum distance (in m) to the location centroid travelled/covered during the observational event (e.g. 500m).

o Empty or removed when: unknown and when locationMode = A (note that when locationMode = D this info is
still very useful —e.g. to identify complete lists where the observer travelled too far away—).
e duration Duration (in hours)
o Empty or removed if unknown or locationMode=A.
e records (recordsTotal in the standard) Total number of records.
o When new or modified data, must be always >0.
= Note that when locationMode = E/D, the total number of records equals the number of species detected in
the complete/fixed list (the total must include all species, not only those that are currently submitted to the
EBP).
= |f records == 0 the complete/fixed list is empty. Event exists but records haven't been recorded or there are
no records from EBP target species.
o When locationMode = A, use as total number of records the number of different combinations of observer and
species recorded in the given date and 10x10 square.
= When locationMode = A, the total corresponds to the total number of aggregated records.” has been
changed for “When locationMode = A, use as total number of records the number of different combinations
of observer and species recorded in the given date and 10x10 square.”. Since this is the only way to ensure
some standarization in the way casual records are counted.
e observer
o If locationMode = E/D -> Identifier of the observer (observer ID). Observer must be unique at the level of the
partnerlD.

o If locationMode = A -> Number of different observers submitting observations for the given 10x10 square and
date.

e protocol_id Identifier of the protocol followed (e.g. a given Common Breeding Bird Survey).
o Leave blank in case of casual records and when complete lists do not proceed from standard monitoring projects.

o state field will be provided during Standard data provisions.
o state = 0 provided event has been removed

o state = 1 provided event is new or has been modified

Removed from the standard

e partner_source_id

Records
{
'properties': {
'breeding_code': { 'type': 'integer', 'description':'Total number of records.','required':False},
‘count': { 'type': 'integer', 'minimum': @, ‘'description':'Number of individuals counted (loc: E/D) or Ma>
‘event_id': { 'type': 'string', 'description':'Identifier of the observational event (e.g. a given comple
‘flying_over': { 'type': 'string' },
‘record_id': { 'type': ‘'string' , 'description': 'Identifier of the record'},
‘records_of_species': { 'type': 'integer', 'minimum': 1, ‘'description’':'Number of records of the given sg
‘state’': {'type': 'number'}
}
X

e record_id Identifier of the record.
o For example, you can use eventlD and speciesCode as recordID for aggregated casual records (i.e. when Events
table locationMode = A).

e event_id Identifier of the observational event (e.g. a given complete list).
e species_code Species code (HBW codes)

e count
o If locationMode = E/D -> Number of individuals counted.

o If locationMode = A -> Maximum count of all records with counts.
o Leave null if only presence is known.

o Since some partners give option to use qualificators (e.g. >,=,aprox, etc), counts should be calculated on the raw
numbers (e.g. using 200 for >200). Using only observations where numbers are qualified as exact numbers may
reduce sample very much.

records_of_species Number of records of the given species.
o If locationMode = E/D then records_of_species must be always 1.

o When locationMode = A, use as total number of records of the given species the number of different observers
that have recorded it in the given date and 10x10 square. [to be homologous to Events table records]

breeding_code Maximum breeding code. Codes based on EBBA2 standard.

flying_over Y (yes) / N (no)
o Empty or removed when: unknown/unclear or location_mode: A

state field will be provided during Standard data provisions.
o state = 0 provided record has been removed

o state = 1 provided record is new or has been modified

Validation phases

We have splitted validation process in several phases. Phases 1 and 2 are done before giving the answer to the client.
Phase 3 validation require more time and are sent to a queue and processed later.

1. Global and schema validations. It checks that the data provision fits the JSON schema. Also checks that
partner_source and date_range are correct.

2. Pre-validation. It checks simple errors that can't be checked with the schema. For example: protocol_codes,
event_code_repetitions inside the same provision or species_codes repetitions inside the same event,...

3. Post-validations. Those validations are done directly into the database. For example: points inside the partner area,
correct species_codes, etc...

We've created the audit tables for logging the validations during data provision process. You can check through the
API the list of errors for each data provision. The reply from the server will give you the audit_id to access lately to the
error list.

Schema validations

JSON schema validations Error code Implemented Fields
Field should be an integer integer_format V4 records
Field should be a number number_format v dura‘Fion, Iocat?on_x,
location_y, radius
event_id, flying_over,
Field should be a string string_format V4 record_id, event_id,

observer, protocol_id,
partner_source, mode

JSON schema validations Error code

Required fields required_field

Field should be a date in ISO 8601 format

date_format
(YYYY-MM-DD)

Field should be a time in format HH:MM:SS time_format

Location_mode should be E (original exact

location provided), D (location lowered to

10x10km level ETRS89-LAEA grid) or A (data location_mode_format
aggregated at 10x10km level ETRS89-LAEA

grid)

Mode should be B (bulk mode), S (standard

mode_format
mode) or T (test mode)

Global checks

Implemented Fields

partner_source, start_date,
end_date, mode, events,
records, data_type, count,
event_id, species_code,
record_id,

\/7 records_of_species,
data_type,date, event_id,
location_mode, location_x,
location_y, location,
observer, protocol_id,
records

W start_date, end_date, date

\/7 time

W location

\/7 mode

Global cheks Error code Implemented
Partner id exists partner_not_found W
Start date later than initial EBP date partner_not_found \/7
End date not in the future old_init_date W
Pre-checks
Pre-checks Error code Implemented
Protocol code not found protocol_not_found W

When location_mode is A (aggregated), field value has to be null
(time,duration,radius,flyingover)

Location_mode E/D records_of_species > 1

Location_mode A observer different observers

Event_date outside provided range in bulk

Provided extenal_event_id is not unique, has been already provided
Provided extenal_record_id is not unique, has been already provided

Provided species_code is repeated in the same event

field_not_null_aggregated

records_not_agg_gt_1

observer_not_number
outside_date_range
event_id_not_unique

record_id_not_unique

SSSNSXS~

species_code_not_unique

Pre-checks Error code Implemented

Duration should be smaller than 24 hours duration_gt_24h \/
Records must be greater than 0 zero_records V4
Post-check
Post-check Error code Implemented
Location is outside partners area outside_location v
Species_code not found in the EBP species list species_code_not_found V
Provided extenal_event_id in record not found in provided events event_id_not_found \/

Provided species_code when protocol data is outside fixed list

Protocols

Standard bird monitoring data is already collected by some local online portals and, therefore, we needed a standard that
could handle it correctly. Properly storing this information will certainly increase the overall quality of the EBP data but also
opens new possibilities in terms of data analysis and regarding the development of further synergies with other EBCC
initiatives.

Note that to be able to deal with data coming from fixed lists and standard monitoring projects in general, we needed to
add a third table to the ones already existing in the former standard: the tables events and records. This third table, named
protocols, will collect the details of the protocol followed (e.g. a given Common Breeding Bird Survey) and, in case of fixed
lists, the definition of the list.

We've created several APl methods to define and create your own protocols into the EBP respository database. You can
see the JSON protocol definition and the fields description. Once the protocol is created, you can use your created
protocols code in the protocol_id field in the data provision events.

{

"protocol_code": "0ODJ",

"title": "Ocells dels Jardins",

"project_type": "GS",

"method": "T",

"website": "http://ocellsdelsjardins.cat/",

"description": "Ocells dels Jardins is a citizen science project aimed to monitor the use of gardens and small

"protocol_details": "Very simple protocol. Only birds detected in the defined sampling area (i.e. garden) and

"ebp_data_structure": "Identital to original database",

"citation": "2015. Ocells dels Jardins, Catalan Ornithological Institute",

"id_gbif" : "",

"geographic_coverage": "Catalonia, Spain",

"start_year": 2014,

"end_year": "",

"ongoing": true,

"link": "",

“"fixed_list_tags": "ESP(54105;54154;57821;58496;58952;58861;60925;61286;61290;53077;54565;55328;55871;57729;57
b

Protocol fields description

Link, id_gbif, end_year and website are optional. If they are emtpy or null, it's not necessary to send the fields in the
JSON file.

e protocol_code Identifier of the protocol followed (e.g. a given Common Breeding Bird Survey).
o title Procotol name/title

e project_type

project_type Project title

CB Common breeding bird survey
cw Common winter bird survey
Ww Winter waterbird count

BA Breeding bird atlas

MC Migration count

WA Winter bird atlas

GS Garden bird survey

RB Rare breeding bird survey

oT other monitoring project

BR Bird ringing/banding results
NF Nocturnal flight calls survey

e method

method Method description
P point counts

M mapping methods

L line-transect

flexible surveys in which only time is controlled and there is no special requirement regarding the
area/distance covered or speed

e website url of the project/protocol (if existing)

e description Brief description of the protocol.

e protocol_details Details about the protocol that complement the information given in fixedlistTags.

e ebp_data_structure Details about how the data has been “downgraded” to a complete/fixed list format.
e citation Reference to the protocaol.

o id_gbif GBIF doi url to the metadata persistent (doi) of the metadata/dataset uploaded to gbif (i.e.
http://doi.org/10.15468/jsjoae).

e geographic_coverage Area covered by the protocol/project.
e start_year Start year.
e end_year Finishing year. Leave empty if not finished.

e ongoing true or false

o fixed_list_tags (only for dataType = F)

o If the protocol has a list of target species, you can explicitly provide it. Give a list of all these species, including
non-target species, within the tag "ESP()" separated with a semicolon(;) (e.g. “ESP(54105;54154;57821)". Use
species codes from HBW codes.

o You can also add a predefined tag from tto include or exclude a group of species (i.e. only raptors or no fly-
overs). Use a semicolon (;) to separate them; in many cases just one tag will be enough.

Species tags Species tag description

NFO no fly-overs

ORB only ringed/trapped birds

OBB only breeding birds

OWB only waterbirds

OSB only seabirds

ORA only raptors

ORS only raptors and soaring birds

OAM only active migrants

PLN partial list no strict: other species can be reported

API protocol methods

Endpoint Method Description
/protocols GET Get list of own protocols
/protocols POST Create new protocol from the provided JSON
/protocols/{procotol_code} = GET Get a concrete protocol with {protocol_code}
/protocols/{procotol_code} PUT Modify the protocol {protocol_code} with the provided JSON
/protocols/{procotol_code} DELETE Delete the protocol {protocol_code} if it's no related events

Recomended system integration steps

1. DB/system preparation work

e Id’s generation (uniques inside partner_source)
o events (i.e. when aggregated: date + 10x10_code)

o records (i.e. when aggregated: event_id+species_code)
o Create species table mappings
e Create breeding codes mappings
e Unique id's generation
e Handle/track updates and removals
e Data aggregation (10x10 for casual data -> ETRS89-LAEA grid)

2. Basic data provision testing

e Create the system username for authentiation (ask ICO-team)

e Get access to https://api.eurobirdportal.org/admin/ APl admin

¢ Get through the API the Oauth?2 token: using username,password, client_id, client_secret, scope=api
e Start with simple data provisions in Test Mode (T)

e Determinate protocol data and create protocols through the API

3. Standard data flow integration

e Create Standard Mode (S) data provisions with real data.
e Create cronjobs or equivalent to send data as periodic tasks.
e Test removals and past modifications.

e Create Standard Mode (S) data provisions with real data
o Decide real-time connection time window daily/weekly/monthly

o Decide records update mode
= (A) all records

= (M) only inserted, modified and removed
e Test removals and previous data modifications

e Create cronjobs or equivalent to send data as periodic tasks

4. Complete data flow with old data

e Send old data in Bulk Mode (B) in chunks. (optimal provision size shoud be determined)

Metadata

Species list

e Access to all species list from HBW

e Access to all ebp target species list
Breeding codes

Breeding

code Description
0 Non breeding (species observed but suspected to be still on migration or to be summering non-breeder)
1 Species observed in breeding season in possible nesting habitat
2 Singing male(s) present (or breeding calls heard) in breeding season
3 Pair observed in suitable nesting habitat in breeding season
4 Permanent territory presumed through registration of territorial behaviour (song, etc.) on at least two
different days a week or more apart at same place
5 Courtship and display
6 Visiting probable nest-site
7 Agitated behaviour or anxiety calls from adults

8 Brood patch on adult examined in the hand

Breeding

code Description
9 Nest-building or excavating of nest-hole
10 Distraction-display or injury-feigning
11 Used nest or eggshells found (occupied or laid within period of survey)
12 Recently fledged young (nidicolous species) or downy young (nidifugous species)
13 Adults entering or leaving nest-site in circumstances indicating occupied nest (including high nests or
nest holes, the contents of which cannot be seen) or adult seen incubating
14 Adult carrying a faecal sac or food for young
15 Nests containing eggs
16 Nests with young seen or heard

Partner sources

Partner source codes Description

SWE_ART artportalen.se
NOR_ART artsobservasjoner.no
SLO_ASY Aves-Symfony
CZE_BCZ birds.cz

BUL_BTR BirdTrack

CYP_BTR BirdTrack

UKI_BTR BirdTrack

SPA_BTR BirdTrack

GRE_BTR BirdTrack

LAT_DDA Dabasdati (LV)
DEN_DBA DOFbasen

SPA_EBI eBird

ISR_EBI eBird

GRE_EBI eBird

TUR_EBI eBird

POR_EBI eBird

CRO_ORN fauna.hr (Ornitho)
HUN_MAP MAP

CAT_ODJ ocellsdelsjardins.cat
RO1_OBM OpenBirdMaps

AUS_ORN ornitho.at

Partner source codes
CAT_ORN
SWI_ORN
DEU_ORN
EUS_ORN
FRA_ORN
ITA_ORN
POL_ORN
RO2_ODA
EST_PLU
BUL_SBI
NET_SOV
FIN_TH
NET_TRE
BEL_OBS

NET_OBS

Description
ornitho.cat
ornitho.ch
ornitho.de
ornitho.eus
ornitho.fr
ornitho.it
ornitho.pl
OrnitoData
Plutof
SmartBirds
Sovon

Tiira
Trektellen
waarnemingen.be/observations.be

waarneming.nl

EBP API

EBP API repository

species . Operations related to species Show/Hide = List Operations = Expand Operations

/species/ Returns list of all species

Response Class (Status 200)
Success

Example Value

"species_id": o,
"latin": "string",
"english": "string”

Response Content Type | application/json ¥

Try it out!

/species/ebp Returns list of all target EBP species

Response Class (Status 200)
Success

Example Value

"species_id": o,
"latin": "string",
"english": "string”

Response Content Type | application/json ¥

Try it out!

/species/subspecies Returns list of all species at subspecies level

Response Class (Status 200)
Success

Example Value

{
"species_id": o,
"subspecies": "string",
"latin": "string",

"subspecies_id": o,

"english": "string"

Response Content Type | application/json ¥ |
Try it out!

/species/{species_id}

Response Class (Status 200)
Success

Model Example Value

"species_id": o,
"latin": “"string",
"english": "string"

Response Content Type | application/json ¥]

Returns species for a concrete code

Parameters
Parameter Value Description _IF_’%Zmeter Data Type
species_id [(required) | path string

Response Messages

HTTP Status Code Reason Response Model

Headers

404 Species code not found.

Try it out!

protocols : Operations related to protocols

Iprotocols/

Response Class (Status 200)
Success

Model Example Value

[
{

"website": "string",
"geographic_coverage": "string",
"start_year": 0,
"protocol_details": "string",
"ebp_data_structure": "string",
"protocol_code": "string",

"title": "string",
"end_year": 0,

NeddakianTs Ueknina®

Response Content Type | application/json ¥ |

Try it out!

ey /protocols/

Parameters

Show/Hide | List Operations | Expand Operations

[WIP] Returns list of all protocols

Creates a new Protocol

Parameter

Parameter Value Description Type Data Type
payload (required) body Model Example Value
{
"website": "string",
"geographic_coverage": "string",
"start_year": 0,
"protocol_details": "string",
Parameter content type: | application/json ¥ "ebp_data_structure”: "string",

"protocol_code": "string",

Response Messages

HTTP Status Code Reason Response Model

"title": "string",
"end_year": 0,
"citation": "string",
"link": "string",
"proiect tvbe": "string".

Headers

201 Protocol successfully created.

Try it out!

/protocols/project_types

Response Class (Status 200)
Success

Model Example Value

"proj_code": "string",

"description”: "string"

Response Content Type | application/json v

Try it out!

breeding_code : Operations related to Breeding codes
/breeding_code/

Response Class (Status 200)
Success

Model Example Value

"breeding_code_text": "string",
"breeding_code": @

Response Content Type | application/json ¥ |

Try it out!

/breeding_code/{code}

Returns list of all project types in protocols

Show/Hide | List Operations | Expand Operations

Returns list of all breeding codes

Returns breeding description for a concrete code

Response Class (Status 200)
Success

Model Example Value

"breeding_code_text": "string",
"breeding_code": @

Response Content Type | application/json ¥]

Parameters
Parameter Value Description _Flf;lggmeter Data Type
code [(required) | path integer

Response Messages

HTTP Status Code Reason Response Model Headers
404 Species code not found.
Try it out!

data : Operations related to data provision

oy /data/

Response Class (Status 200)
Success

Model Example Value

"partner_source": "string",
"end_date": "2018-06-04",
"records_count": 0,
"audit_id": o,
"events_count": 0,
"start_date": "2018-06-04"

Response Content Type [application/json v

Try it out!

/data/audit

Response Class (Status 200)
Success

Model Example Value

"partner_source": "string",
"status": "string",
"end_date": "string",
"data_log": [
{
"_type": "string",
"audit_id_log": o,

Show/Hide | List Operations | Expand Operations

Send a new data provision

Returns all data provision audits send by partner json

"error_message": "string",

Response Content Type | application/json ¥ |

Try it out!

/data/audit/last

Response Class (Status 200)
Success

Example Value

"partner_source": "string",
"status": "string",
"end_date": "string"”,
"data_log": [
{
"_type": "string",
"audit_id_log": o,

"error_message": "string",

MR A~TLAL e (PR TR S T}

Response Content Type | application/json ¥ |

Try it out!
/data/audit/{code}

Response Class (Status 200)
Success

Example Value

"partner_source": "string",

"status": "string",

"end_date": "string”,

"data_log": [

{

"_type": "string",

"audit_id_log": O,

"error_message": "string",

TR FLAL e [T TR S 1)

Response Content Type | application/json ¥ |

Returns last data provision audits send by partner json

Returns data audit from data provision with provided code

Parameters
Parameter Value Description _le%zmeter Data Type
code (required) path string

Try it out!

ey /data/bulk

Response Class (Status 200)
Success

Example Value

Send a new data provision

"partner_source”: "string",
"status": "string",
"end_date": "string",
"data_log": [
{
"_type": "string",
"audit_id_log": @,
"error_message": "string",
"field_source": "string",

"LinTlA": "ecdnina

Response Content Type | application/json ¥

Try it out!

oauth : Operations related to authorization

/oauth/me

Response Messages
HTTP Status Code Reason

Response Model

Show/Hide | List Operations | Expand Operations

The Authorization Server provides the user profile

Headers

200 Success

Try it out!

ey /oauth/revoke

Response Messages
HTTP Status Code Reason

Notify the authorization server that a previously obtained access token is no longer needed

Response Model

Headers

200 Success

Try it out!

o5y /oauth/token

Response Messages
HTTP Status Code Reason

Response Model

The Authorization Server provides the access token

Headers

200 Success

Try it out!

admin : Operations related Administration or internal API tasks

/admin/

Response Messages
HTTP Status Code Reason

Response Model

Show/Hide | List Operations | Expand Operations

Administration console access

Headers

200 Success

Try it out!

/admin/viewer/chart/last_weeks/{weeks}

Parameters

Generates a summary with data week by week for a concrete species and year

Parameter

Parameter Value Description Type Data Type
weeks [(required) | path string
Response Messages

HTTP Status Code Reason Response Model Headers

200 Success

Try it out!

/admin/viewer/chart/{partner_source}/{species_code}/{year}

Generates a summary with data week by week for a concrete species and year

Parameters
Parameter Value Description _Il:j}%gmeter Data Type
year ((required) | path string
species_code (required) | path string
partner_source |(required) | path string
Response Messages
HTTP Status Code Reason Response Model Headers
200 Success
Try it out!
/admin/viewer/data/{partner_source}/{species_code}/{year} Generates a summary with data for concrete species and year
Parameters
Parameter Value Description _IFj%zmeter Data Type
year [(required) | path string
species_code |(required) | path string
partner_source |required) | path string
Response Messages
HTTP Status Code Reason Response Model Headers
200 Success
Try it out!
/admin/viewer/shp/{partner_source} Get GeoJSON shapefile from parnter's including buffer
Parameters
Parameter Value Description _IP_%gmeter Data Type
partner_source [required) | path string
Response Messages
HTTP Status Code Reason Response Model Headers

200 Success

Try it out!

/admin/viewer/{partner_source}/{year} Generates a summary with data for concrete week and year
Parameters
Parameter Value Description _I?_‘%gmeter Data Type
year [required) | path string
partner_source |(required) | path string
Response Messages
HTTP Status Code Reason Response Model Headers

200 Success

Try it out!

[BASE URL: /, API VERSION: 1.0]

	Overview
	Architecture overview
	Database
	API/web services
	Technology
	Security
	Services
	Modules
	a) Data provisions
	b) Maps creation
	c) Repository management
	d) Metadata handling

	Scheduled and asynchronous task
	Documentation

	Annex 1. Final database structure (main tables and relations)

